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Abstract 

The 23 Glazer tilt systems describing octahedral tilting 
in perovskites have been investigated. It is shown that 
in tilt systems a÷a+a-, a+b+b -, a+a+c -, a+b+c -, a°b+b - 
and a°b+c- it is not possible to link together a three- 
dimensional network of perfectly rigid octahedra. In 
these tilt systems small distortions of the octahedra must 
occur. The magnitude of the distortions in the a+a+a - and 
a°b+b - tilt systems are estimated. A table of predicted 
space groups for ordered perovskites, A2MM'06, for all 
23 tilt systems is also given. 

1. Introduction 

The perovskite structure class encompasses a huge 
variety of compounds. Most of the metallic ions 
in the periodic table can be incorporated into the 
perovskite structure. Oxides and fluorides comprise the 
vast majority of perovskite compounds (Goodenough 
& Longo, 1970), but the perovskite structure is found 
for many combinations of cations and anions. Chlorides 
(Brynestad, Yakel & Smith, 1966; Horowitz, Amit, 
Makovsky, Ben Dor & Kalman, 1982), bromides 
(Knochenmuss, Reber, Rajasekharan & GEidel, 1986), 
hydrides (Messer, Eastman, Mers & Maeland, 1964), 
oxynitrides (Bacher et al., 1988) and sulfides (Clearfield, 
1963; Rodier & Laruelle, 1970; No~l, Padiou & Prigent, 
1975) are all known with the perovskite structure. 
Since the perovskite structure can accommodate 
such a wide variety of ions, the physical properties 
of perovskite compounds are wonderfully diverse. 
Perovskite compounds with interesting dielectric, 
magnetic, electrical, optical and catalytic properties are 
all known and have been widely studied. Technological 
applications vary from the dielectric properties of 
BaTiO3 (Shirane, Danner & Pepinski, 1957; Galasso, 
1969), which make it an important material in the 
capacitor industry, to the superconductivity displayed 
by Ba(Bil_xPbx)O3 (Sleight, Gillson & Bierstedt, 1975) 
and the perovskite-related high-temperature cuprate 
superconductors, to the fascinating magnetoresistive 
and magnetostrictive properties of (Lal_/Cax)MnO3 
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(Hwang, Cheong, Radaelli, Marezio & Batlogg, 1995; 
Fontcuberta et al., 1996). The technological importance 
of these compounds and many others has made the 
perovskite structure one of the most important structures 
in all material science. 

The ideal perovskite structure has an AMX3 stoi- 
chiometry and belongs to the cubic space group Pm3m. 
The A cation is surrounded by 12 X anions in a 
dodecahedral environment, the M cation is octahedrally 
coordinated by six X ions, and the X anions are 
coordinated by two M cations and four A cations. There 
are at least two ways of visualizing the structure. The 
most common description of the perovskite structure 
is a three-dimensional cubic network of corner-sharing 
MX6 octahedra. In this description the A cation sits in 
the center of a cube defined by eight corner-sharing 
octahedral units. An alternative way of visualizing the 
perovskite structure is to begin with a cubic close-packed 
array of X anions, then replace one out of every four 
X ions with an A cation in an ordered way to obtain a 
cubic close-packed AX3 array. Finally, all the octahedral 
holes in the AX3 lattice that do not border an A cation 
are filled with M cations (25% of the octahedral holes). 

Even though there are a large number of simple 
perovskites, AMX3, the number of possible compounds 
is greatly expanded when multiple ions are substituted 
for one or more of the original ions. In most cases this 
substitution occurs on the cation sites and leads to a large 
class of compounds known either as double or complex 
perovskites, AAtMM'X6. When such substitutions are 
made the ions can occupy the original cation site of the 
simple structure in either a random or an ordered fashion. 
If an ordered arrangement is adopted the symmetry and, 
in many cases, the size of the unit cell are changed. 

Although the ideal perovskite structure is cubic there 
are several structural deviations from the ideal cubic 
structure, both for simple and ordered perovskites. In 
fact, there are many more distorted perovskites than 
there are cubic perovskites. Even the mineral perovskite 
itself, CaTiO3, is orthorhombic rather than cubic (Sasaki, 
Prewitt, Bass & Schulze, 1987). Cubic, tetragonal, 
orthorhombic, rhombohedral, monoclinic and triclinic 
perovskites are all known. These structural distortions 
are of interest not only from a crystallographer's point of 
view, but also because they can have important effects 
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on the physical properties of perovskite compounds, 
particularly the electrical and magnetic properties. 
The influence small structural changes have on the 
magnetoresistance properties of manganese- and cobalt- 
based perovskites is an important example of this 
phenomenon (Hwang, Cheong, Radaelli, Marezio & 
Batlogg, 1995; Fontcuberta et al., 1996; Bricefio, Chang, 
Sun, Schultz & Xiang, 1995). 

Distortions from the ideal perovskite structure can 
be attributed to one of three mechanisms: distortions of 
the octahedra, cation displacements within the octahedra 
and tilting of the octahedra. The first two distortion 
mechanisms are driven by electronic instabilities of 
the octahedral metal ion. The Jahn-Teller distortion in 
KCuF3 (Okazaki & Suemune, 1961) is an example of an 
electronic instability that leads to octahedral distortions. 
The ferroelectric displacement of titanium in BaTiO3 
(Shirane, Danner & Pepinski, 1957) is an example of an 
electronic instability that leads to cation displacements. 
Although these distortion mechanisms are important 
in many compounds, they are not discussed further 
in this paper. The third and most common distortion 
mechanism, octahedral tilting, can be realized by tilting 
essentially rigid MO6 octahedra while maintaining their 
corner-sharing connectivity. This type of distortion is 
typically observed when the A cation is too small for the 
cubic MO3 corner-sharing octahedral network. In such 
cases it is the lowest energy distortion mode, because the 
A----O distances can be shortened while the first coordi- 
nation sphere about the M cation remains unchanged. 
(In terms of the MO3 lattice, only the soft M----O---M 
bond angle is disturbed.) Geometrical considerations 
associated with this distortion are the subject of this 
paper, while the interatomic forces that drive octahedral 
tilting distortions are the subject of the following paper. 

Over the years many investigators have studied dis- 
tortions in the perovskite structure. Thomas has devised 
a system for classifying perovskites based on the poly- 
hedral volumes of the A and M cations, which is par- 
ticularly useful when both cation displacements and 
octahedral tilting occur (Thomas, 1989, 1996; Thomas & 
Beitollahi, 1994). O'Keeffe & Hyde (1977) structurally 
described the three most common octahedral tilt systems; 
a÷b-b -, a a a and a÷a÷a ÷. Megaw & Darlington (1975) 
studied, in great detail, the effect of octahedral tilting 
and octahedral deformation in rhombohedral perovskites 
and Deblieck and coworkers classified possible tilt- 
ing combinations in perovskite-like ABX4 compounds 
(Deblieck, 1986; Deblieck, Van Tendeloo, Van Landuyt 
& Amelinckx, 1985). However, almost certainly the 
most influential work was published in 1972 by Glazer. 
This work contained an eloquent description of all 
possible simple octahedral tilting combinations (Glazer, 
1972). An updated description, including a few minor 
corrections, can be found in the book 'Space Groups 
f o r  Solid State Scientists', by Burns & Glazer (1990). A 
similar but much less known approach was developed 

in Russia around the same time by Aleksandrov (1976). 
However, it is the notation developed by Glazer, to 
describe octahedral tilting distortions, that has become 
standard notation in the perovskite literature. 

Somewhat surprisingly, a paper by Leinenweber & 
Parise (1995) claimed that tilt systems a÷a÷c- (#5) and 
a÷a÷a - (#7) do not produce structures belonging to space 
group Pmmn as predicted by Glazer. They contended 
that these two tilt systems actually result in structures 
belonging to space group P42/nmc (Leinenweber & 
Parise, 1995). In addition to this discrepancy, the com- 
plications that arise when cation ordering and octahedral 
tilting occur simultaneously have not been addressed 
in a comprehensive manner. Both of these issues are 
discussed in detail in the sections that follow. 

2. A brief review of Glazer notation 

The notation developed by Glazer over 20 yeai'.s ago 
to describe octahedral tilting distortions in perovskites 
has become the standard by which such distortions are 
described (Glazer, 1972). A familiarity with this notation 
is necessary to follow the discussion throughout this 
paper. As an aid to those unfamiliar with Glazer notation 
a brief review is presented below. Further explanation 
can be found in the original reference (Glazer, 1972). 

Using Glazer notation a tilt system is described by 
specifying the rotations of the octahedra about each 
of the three Cartesian axes. The rotations about each 
axis are described by two parameters. The first of these 
parameters is a letter specifying the magnitude of the 
rotation about that axis, relative to the magnitude of the 
rotations about the other Cartesian axes. For example, 
in the a÷a÷a ÷ system the rotation angle is the same 
about each of the three axes; whereas in the a÷a÷c ÷ tilt 
system the rotation angle about the z axis is different 
from the rotation angle about the x and y axes. The 
second parameter is a superscript indicating whether 
the rotations in adjacent layers are in the same or 
opposite directions. A negative superscript indicates that 
the rotations of two neighboring octahedra, along the 
tilt axis, are in the opposite directions, while a positive 
superscript is used when they tilt in the same direction. A 
zero superscript is used when no rotations occur about 
an axis. 

The clearest example of how Glazer notation 
describes tilted perovskite structures is a comparison 
of the two one-tilt systems, a°a°c ÷ and a°a°c -. The 
octahedra in both these tilt systems are rotated only 
about the fourfold axes parallel to the z axis. Fig. 1 
shows a view looking down the z axis at eight octahedra 
in both tilt systems. It is clear in this figure that rotation 
of one octahedron forces four of the neighboring six 
octahedra to rotate in the opposite sense. This in turn 
causes all the octahedra in the (001) plane to be rotated 
with the same magnitude as the first octahedron. The 
final two neighboring octahedra, connected along the z 
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axis, are not coupled in the same way and can rotate 
independently. If these final two neighboring octahedra 
rotate in the same direction, as in Fig. 1 (b), the a°a°c+ tilt 
system results. If they rotate in the opposite direction, 
as in Fig. l(a), the a°a°c - tilt system results. More 
complicated structures where independent tilting has to 
be considered in more than two layers is not described 
by Glazer notation. 

3. Space-group descriptions of all 23 tilt systems 

3.1. Simulated structures and their comparison with 
Glazer' s space-group assignments 

Although Glazer completely described the space 
group and symmetry associated with each tilting 
system it is far from trivial in many cases to turn 
that information into a model structure, complete with 
atomic positions. A complete description of the unit cell, 

aoa%- 

(a) 

(~1) (.10 c + 

/ 

(b) 

Fig. 1. A view Iookin~ down the z axis of two adjacent layers of octahe- 
dra for (a) the a°a°c  - tilt system and (b) the a ° a %  ÷ tilt system. This 
view is a polyhedral representation of the crystal structure where 
each octahedron symbolizes a metal atom M surrounded by six O 
atoms. The metal atom is located in the center of the octahedron and 
an O atom is located at each corner. The round circles represent the 
A ions. 

Table 1. A comparison of the space groups predicted for 
each of the 23 simple tilt systems by Glazer (1972) with 

those generated by POTATO 

For tilt systems 4, 5, 6, 7, 17 and 18 the atomic positions calculated by 
P O T A T O  always indicated slight distortions of the octahedra and,. 
therefore, no space group could be assigned as rigorously correct. 
This result is discussed in more detail in the text. 

Tilt system Tilt system Space group Space group 
number symbol (Glazer, 1972) (POTA TO) 

Three-tilt systems 
1 a+b+c + I m m m  (#71) Immm (#71) 
2 a+b+b + I m m m  (#71) Immm (#71) 
3 a+a+a + Ira3 (#204) Ira3 (#204) 
4 a+b+c - Pmmn (#59) Pmmn (#59-2) 
5 a+a+c - P m m n  (#50) Pmmn (#59-2) 
6 a+b+b - P m m n  (#59) Pmmn (#59-2) 
7 a+a+a - P m m n  (#59) Pmmn (#59-2) 
8 a + b - c  - A 2 1 / m l l  (#11) P 2 1 / m  (#11-1) 
9 a + a - c  - A 2 1 / m l l  (#11) P 2 t / m  (#11-1) 
10 a + b - b  - Pmnb (#62) Prima (#62) 
I 1 a+a a P m n b  (#62) Prima (#62) 
12 a-b-c- Fi (#2) Fi (#2) 
13 a - b - b -  I2_/a (#15) 12_/a (#15-3) 
14 a a a -  R3c (#167) R3c (#167-2) 

Two-tilt systems 
15 a°b+c + I m m m  (#71) Immm (#71) 
16 a°b+b + 1 4 / m m m  (#139) 1 4 / m m m  (#139) 
17 a°b + c -  B m m b  (#63) Pmmn (#59-2) 
18 a°b+b - B m m b  (#63) Pmmn (#59-2) 
19 a ° b - c  - F 2 / m l  1 (#12) 1 2 / m  (#12-3) 
20 a ° b - b  - Imcm (#74) Imma (#74) 

One-tilt systems 
21 a°a°c + C 4 / m m b  (#127) P 4 / m b m  (#127) 
22 a°a°c - F 4 / m m c  (#140) 1 4 / m c m  (#140) 

Zero-tilt systems 
23 a°a°a ° P m 3 m  (#221) Pm3m (#221) 

where all the atomic positions are given, would be very 
useful in several situations. Such a model is needed to 
compare experimentally determined structures with ideal 
structures; as a starting point for Rietveld refinements; 
or to systematically study the differences in the ideal 
structures associated with each tilt system. With these 
applications in mind the FORTRAN program POTATO 
(Program Originated To Analyze Tilted Octahedra) was 
developed (Woodward, 1996). Given the Glazer symbol, 
the rotation angle about each of the Cartesian axes and 
the M----O bond distances as input, POTATO outputs 
a unit-cell description of the compound complete with 
atomic positions. The unit cell calculated by POTATO is 
always described as centrosymmetric triclinic (Pi)  and 
doubled along all three axes. The true asymmetric unit 
is then found by examination of relationships between 
atomic positions or more conveniently with one of the 
automated routines now available [e.g. find symmetry 
within the InsightII package (Biosym Technologies, 
1993)].* Using this approach the space group and 

* Based on the results contained in this paper the current version of 
POTATO also gives the true space group and asymmetric unit for each 
tilt system. 
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Table 2. Three  d i f f e ren t  d e s c r i p t i o n s  o f  the  a t o m i c  p o s i n o n s  o f  an  a+ a+ a - t i l t ed  p e r o v s k i t e  (a = 10  °) 

The first two descriptions were generated in POTATO. In the first structure the distances were constrained to be constant (2.00,~,), while in the 
second structure the angles were constrained to remain 90 ° . The third description was generated using the O1, 0 2  and 03  positions common to 
all three descriptions and the symmetry generators associated with P42/nmc. All other oxygens in the unit cells can be generated from these 12 
using the inversion centers on the M ions. The coordinates shown in bold are those where the second and third descriptions differ from the first 
description. 

Pmmn Pmmn 
(POTATO, constant distance) (POTATO, 90 ° angles) P 42/ nmc 

x y z x y z x y z 

O1 1/4 - 0 . 0 4 0 4  0.0482 1/4 -0 .0404  0.0482 1/4 -0 .0404  0.0482 
0 2  0.0482 1/4 - 0 . 0 4 0 4  0.0482 1/4 -0 .0404  0.0482 1/4 - 0 . 0 4 0 4  
03  0.4518 1/4 - 0 . 0 4 0 4  0.4518 1/4 -0 .0404  0.4518 1/4 - 0 . 0 4 0 4  
0 4  1/4 0.5404 0.0482 1/4 0.54(14 0.0482 1/4 0.5404 0.0482 
05  - 0 . 0 4 0 4  0.0482 1/4 - 0 . 0 4 0 4  0.0482 0.2513 - 0 . 0 4 0 4  0.0404 1/4 
0 6  0.5404 0.0482 1/4 0.5404 0.0482 0.2513 0.5404 0.0404 1/4 
0 7  -0 .0404  0.4518 1/4 --0.0404 0.4518 0.2513 - 0 . 0 4 0 4  0.4596 1/4 
0 8  0.5404 0.4518 1/4 0.5404 0.4518 0.2513 0.5404 0.4596 I/4 
0 9  1/4 0.0553 0.4703 1/4 0.0394 0.4667 1/4 0.0482 0.4596 

O10 - 0 . 0 3 2 9  1/4 0.5535 - 0 . 0 3 2 2  1/4 0.5542 - 0 . 0 4 0 4  1/4 0.5482 
O 11 0.5329 1/4 0.5535 0.5322 1/4 0.5542 0.5404 1/4 0.5482 
O12 1/4 0.4447 0.4703 1/4 0.4606 0.4667 1/4 0.4518 0.4596 

All distances 2.00 ,~ 
1/3 of  the angles 86.5 ° 

1/3 of the distances 1.98 ,~, 
All angles 90 ° 

1/3 of the distances 1.98 ,~ 
1/3 of  the angles 88.4 ° 

asymmetric unit were calculated for each of the 23 
Glazer tilt systems. The results of these calculations 
are compared with Glazer's findings in Table 1. The 
complete unit-cell descriptions for each tilt system are 
given in Appendix B. 

One curiosity of this analysis was that for tilt systems 
a+b+c - (#4), a+a÷c - (#5), a+b+b - (#6), a+a÷a - (#7), 
a°b+c - (#17) and a°b÷b - (#18) slight distortions of the 
octahedra were always necessary in order to retain the 
connectivity of the octahedra. Interestingly, the two tilt 
systems, a÷a+c - (#5) and a÷a÷a - (#7), that Leinenweber 
& Parise (1995) claimed were incorrectly assigned by 
Glazer are among this group. At first this seemed to 
be a shortcoming of the algorithms used in P O T A T O .  

However, despite several modifications to P O T A T O  this 
anomaly persisted. This led to the realization that the 
octahedral distortions were not caused by an error in 
P O T A T O ,  but rather are an inherent geometric property 
of these six tilt systems.* Proof of this claim is given 
in Appendix B and demonstrated in Appendix C by cal- 
culating the metal-oxygen vectors that define octahedra 
in the a+a+a - tilt system. 

3.2. S p a c e - g r o u p  a s s i g n m e n t s  f o r  tilt  s y s t e m s  4, 5, 6, 7, 

17 a n d  18 

With the exception of the above-mentioned tilt sys- 
tems, P O T A T O  was able to generate perfectly linked net- 
works of rigid octahedra for all tilt systems. Furthermore, 
for these tilt systems the space groups and lattice con- 
stants predicted by Glazer were found to agree exactly 
with the unit-cell descriptions generated by P O T A T O .  

* O'Keeffe & Hyde (1977) had suggested that octahedral distortions 
must occur in some tilt systems, but did not identify which tilt systems. 

With regard to those tilt systems where distortions of the 
octahedra must occur it becomes impossible to uniquely 
define a space group. The problem arises because the 
symmetry of the unit cell depends on the way in which 
the octahedra are distorted. Table 2 compares the atomic 
positions, bond distances and angles for a hypothetical 
compound belonging to the a÷a÷a - tilt system. The first 
two structures have symmetry described by space group 
P m m n ,  as suggested by Glazer (Glazer, 1972; Bums & 
Glazer 1990). The difference between the two structures 
is that in the first structure all the bond distances have 
remained rigid, while in the second structure all the 
bond angles have been constrained to be 90 ° . The third 
structure has symmetry corresponding to space group 
P42 /nmc ,  as suggested by Leinenweber & Parise (1995). 
It is evident from this table that the atomic positions 
are quite similar in all three structures. In Table 3 the 
results of a similar calculation for the a°b*b  - tilt system 
are shown. Here the description in P m m n  as output 
from P O T A T O  is very close to a unit cell having B m m b  

symmetry, as predicted by Glazer. In this tilt system the 
octahedral distortions are very small. Although it is not 
possible to rigorously assign a space group for these 
tilt systems, it seems reasonable to assume that actual 
compounds will crystallize in the more symmetric of the 
two available space groups. Based on that assumption 
the a÷a+b - and a+a+a - tilt systems are assigned to 
P421nmc and the a°b+ c - and a°b+b - tilt systems assigned 
to B m m b  (standard setting C m c m ) .  The a+b÷c - and 

a÷b+b - tilt systems cannot be tetragonal, because the a 
and b lattice constants are different and so they remain 
orthorhombic, P m m n ,  as originally suggested by Glazer 
(1972). Therefore, in essence none of the assignments 
in Glazer's work (Bums & Glazer, 1990) are incorrect. 
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Table 3. Three different descriptions o f  the atomic posi t ions o f  an a°b+b - tilted perovski te  (a = 10 °) 

The first two descriptions were generated in POTATO. In the first structure the distances were constrained to be constant (2.00b,), while in the 
second structure the angles were constrained to remain at 90 °. The third description was generated using the O1 ,02  and 03 positions common to 
all three descriptions and the symmetry generators associated with Bmmb (nonstandard setting of space group #63, Cmcm). All other oxygens in 
the unit cells can be generated from these 12 using the inversion centers on the M ions. The coordinates shown in bold face type are those where 
the second and third description differ from the first description. The Bmmb coordinates have been shifted by ( -1 /4 , -1 /4 ,0)  for comparison with 
the Pmmn coordinates. 

Pmmn Pmmn 
(POTATO, constant distance) (POTATO, 90 ° angles) Bmmb 

x y z x y z x y z 

O1 I/4 -0.0438 0.0438 1/4 -0.0438 0.0438 1/4 -0.0438 0.0438 
02 0.0445 1/4 0.0038 0.0445 1/4 0.0038 0.0445 1/4 0.0038 
03 0.4555 1/4 0.0038 0.4555 1/4 0.0038 0.4555 1/4 0.0038 
04 1/4 0.5438 0.0438 1/4 0.5438 0.0438 1/4 0.5438 0.0438 
05 -0.0445 0.0038 1/4 -0.0445 0.0038 1/4 -0.0445 0.0038 1/4 
06 0.5445 0.0038 1/4 0.5445 0.0038 1/4 0.5445 0.0038 1/4 
07 -0.0445 0.4962 1/4 -0.0445 0.4962 1/4 -0.0445 0.,*962 1/4 
08 0.5445 0.4962 1/4 0.5445 0.4962 1/4 0.5445 0.4962 1/4 
09 1/4 0.0451 0.4576 1/4 0.0438 0.4576 1/4 0.0438 0.4562 
O10 -0.0431 1/4 0.5113 -0.0431 1/4 0.5113 -0.0445 1/4 0.5038 
O11 0.5431 1/4 0.5113 0.5431 1/4 0.5113 0.5445 1/4 0.5038 
O12 1/4 0.4549 0.4576 1/4 0.4562 0.4576 1/4 0.4562 0.4562 

All distances 2.000 A 
1/6 of the angles 90.3 ° 

1/3 of the distances 1.998 A 
All angles 90 ° 

All distances 2.000/k 
1/3 of the angles 90.9 ° 

However, for tilt systems a+a+b - (#5) and a+a+a - (#7) 
the space group P42/nmc suggested by Leinenweber & 
Parise (1995) is equally justified and may be favored 
due to its higher symmetry. 

4. Combined effect of cation ordering and 
octahedral tilting 

In the cubic perovskite structure 1:1 ordering of the M- 
site cations requires the unit cell to be doubled along 
all three crystallographic directions, in order to maintain 
translational symmetry. The lattice also changes from 
simple cubic (space group Pm3m) to face-centered cubic 
(space group Fm3m).  Octahedral tilting can also cause 
a doubling of the unit cell and often accompanies 
cation ordering. Therefore, it is instructive to consider 
the combined effects of cation ordering and octahedral 
tilting. 

To illustrate the combined effect of cation ordering 
and octahedral tilting consider the tetragonally distorted 
a°a°c - tilt system. Upon tilting the structure distorts from 
cubic to face-centered tetragonal, space group F4/mmc.  
This is a nonstandard setting and the unit cell must 
be redefined in order describe the structure in terms 
of the standard space-group setting, 141mcm. The new 
unit cell is body-centered and the relationship between 
the lattice constants in the face-centered cell and the 
new cell is at = arl21/2 and ct = CF. Introducing cation 
order lowers the symmetry once again to 141m. The 
relationship between the a and b axes in the simple 
cubic cell, the face-centered tetragonal cell and the body- 
centered tetragonal cell is illustrated in Fig. 2. The 
introduction of cation ordering will always result in a 
loss of symmetry, either space-group symmetry elements 

or translational symmetry. The symmetry of the ordered 
unit cell must be lower than the disordered or simple unit 
cell, because the octahedral cation sites are no longer 
equivalent. This destroys any symmetry operations that 
relate neighboring octahedral sites. In this example, half 
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Fig. 2. The relationship between the a and b axes in (a) the simple 
cubic perovskite cell before an octahedral tilting distortion, (b) the 
face-centered tetragonal cell after an octahedral tilting distortion, 
(c) the body-centered tetragonai cell and (d) the ordered body- 
centered tetragonal cell. Mirror planes parallel to the c axis cut 
through the O atoms and relate the corner M ions (0,0,0) with the 

1 1 M ion at the center of the ab face (.~,7,0) in the unit cell shown 
in (c). Ordering of different cations on the M site destroys those 
mirror planes (as well as all the glide planes), as shown in (at). 
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Table 4. Space groups for  all possible simple tilt systems 
both with and without 1:1 cation ordering 

Tilt system 
number 

Three-tilt systems 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Two-tilt systems 
15 
16 
17 
18 
19 
20 

One-tilt systems 
21 
22 

Zero-tilt systems 
23 

Tilt system Space group Space group 
symbol (no ordering) (1:1 ordering) 

a+b+ c + I m m m  (#71) Pnnn (#48) 
a+b+b + I m m m  (#71) Pnnn (#48) 
a+ a+ a + Ira3 (#204) Pn3 (#201) 
a+b+ c - P m m n  (#59-2) P 2 / c  (#13) 
a+ a+ c -  P 4 2 / n m c  (#137-2) P42/n  (#86) 
a+b+b - Pmmn  (#59-2) P2/c (#13) 
a+ a+ a - P 4 2 / n m c  (#137-2) P4z/_n (#86) 
a + b - c  - P 2 1 / m  (#11-1) PI (#2) 
a + a - c  - P 2 1 / m  (#11-1) Pi (#2) 
a + b - b  - Pnma (#62) P21 /n  (#14-2) 
a+a a Pnma (#62) P21/n (#14-2) 
a - b  c F1 (#2) FI (#2) 
a - b - b -  I2_/a (#15-3) Fi (#2) 
a a a R 3 c  (#167-2) R3 (#148-2) 

a°b+ c + I m m m  (#71) Pnnn (#48) 
a°b+b + 1 4 / m m m  (#139) P 4 2 / n n m  (#134) 
a°b+c - Cmcm (#63) C 2 / c  (#151) 
a°b+b - Cmcm (#63_) C2/_c (#151) 
a ° b - c  - 1 2 / m  (#123) 11 (#2) _ 
a ° b - b  - Imma (#74) 1 2 / m  (#123) 

a°a°c + P 4 / m b m  (#127) P 4 / m n c  (#128) 
a°a°c 1 4 / m c m  (# 140) 14/m (#87) 

a°a°a° P m 3 m  (#221) Fm3m (#225) 

of the symmetry elements are destroyed, including the 
mirror plane perpendicular to the fourfold axis and c 
glide planes parallel to the fourfold axis, lowering the 
symmetry of the ordered a°a°c - from 14/mcm to 14/m. 

In a similar manner the space groups for ordered 
perovskites in all 23 of the simple tilt systems can be 
determined. This analysis was performed using Inter- 
national Tables for  X-ray Crystallography (1983, Vol. 
A) and double-checked using POTATO with an ordered 
arrangement of cations. The results are given in Table 4 
along with the final space-group assignments for simple 
tilt systems. For each tilt system the space group describ- 
ing the ordered perovskite is a maximal nonisomorphic 
subgroup of the space group describing the simple 
perovskite and, of course, all the ordered perovskite 
space groups are subgroups of Fm3m. Unlike Glazer's 
work with the tilt systems of simple perovskites, there 
is no precedent in the literature with which to compare 
the results of Table 4. However, Leinenweber (1996) 
has derived a similar table of predicted space groups 
for ordered perovskites, using a completely different 
approach, similar to the method used originally by 
Glazer, and his results are in complete agreement with 
the results of Table 4. 

POTATO is also able to generate unit-cell descriptions 
for ordered perovskites A2MMt06, where the MI---O 
distance differs from the M--O distance. When the 
two bond distances are nonequivalent and structures 

are generated for each of the 23 tilt systems, distorted 
octahedra result for several of the tilt systems, including 
tilt systems 4-7 and 17-18. This is not unexpected 
because they are the same tilt systems where, as shown 
by geometrical arguments made earlier, the octahedra 
are forced to distort for simple perovskites. In addition, 
tilt systems 8-11 now also show slight distortions in 
their octahedra as the M---O and M'- -O bond distances 
become increasingly different. It is uncertain at this 
time whether this is a geometrical limitation of these 
tilt systems when the M---O and M--O bond distances 
differ. More work is necessary to conclusively prove 
this point. 

5. Conclusions 

With the aid of POTATO the 23 tilt systems originally 
described by Glazer have been investigated. It has been 
shown that in the tilt systems a+a+a -, a+b÷b -, a+a÷c -, 
a÷b+c -, a°b÷b - and a°b+c - it is not possible to link 
together a three-dimensional network of perfectly rigid 
octahedra. In these tilt systems small distortions of the 
octahedra must occur to preserve connectivity of the 
octahedra. The distortions are smaller in the a°b+c - 
and a°b+b - tilt systems than they are in the other 
four tilt systems. These distortions can have important 
consequences, particularly on the crystallography. For 
example, in tilt systems a+a+c - (#5) and a+a÷a - (#7) 
it appears as though P421nmc is a more reasonable 
space-group assignment than Pmmn, based on its higher 
symmetry. Finally, a table of predicted space groups 
for compounds that display both cation ordering and 
octahedral tilting has been derived. 

I would like to thank Dr Arthur Sleight for his support 
and many helpful suggestions throughout this project. I 
would also like to thank Dr John Evans for a careful 
and critical reading of the manuscript and countless 
discussions over the entire period of this work. 

APPENDIX A 
Standard unit-cell descriptions of distorted 

perovskites 

A practical difficulty of working with distorted per- 
ovskites is the widespread use of nonstandard cell set- 
tings. These types of descriptions are useful when com- 
paring two different structures, but can be confusing 
when many different compounds and space groups are 
examined. Transforming to a standard setting, which 
is necessary when using many software packages, can 
sometimes be confusing, time consuming and lead to 
possible errors. Adding to the confusion is the fact that 
among the space groups corresponding to the different 
tilt systems there are several different choices of origin 
and unit-cell size. In the course of this analysis, using 
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T a b l e  5. A t o m i c  pos i t i ons  a n d  uni t -ce l l  descr ip t ions  f o r  al l  the  space  g r o u p s  g e n e r a t e d  by  s imp le  t i l t ing o f  the  M O  6 
o c t a h e d r a  

The number immediately below the space group name is the space group number in International Tables for X-ray Crystallography (1983, 
Vol. A). All the space-group descriptions are standard settings. The other number in the first column signifies the tilt systems corresponding to 
each space group. 

Space Unit-cell 
group size Cation positions 

Immm a ~- 2ap A cation 
(A-71) b ~_ 2ap (2.a) O, O, 0 

1 I c~--2ap (2b) ~i ~, ~. 
Tilt systems (2c) ~, 0 
1 , 2 a n d  15 (2d) ~,0,½ 

M cation 
(8k) 1,1,1 

Ira3 a ~_ 2ap A cation 
(A-204) b x 2ap (2a) 0, 0, 0 

c~_2ap (6b) 0,½,½ 
Tilt system M cation 

3 (8c) 11 ~ ,~ , I  

Anion positions 

(81) O,y,z y~--~,z~--¼ 
(8m) x,O,z x~--~,z "~! 

2~ (8n) x,y,O x ~ _ ~ , y _ a  

Cornments 

Shift by I,  I, 

(24g) O, y,z  Y "~ I,~-- I Shift by I 1 ~,7,,I 

Pmmn a ~_ 2ap 
(A-59-2) b _~ 2ap 

c ~_ 2a e 
Tilt systems 

4 and 6 

A cation 

(2a) i , i , z  z _ !  
(2a) ~,~z z -~ 
(2b) i ,~  z Z--~ 
(2b) z z - - ~ -  - - 4  
M cation 
(4c) 0 ,0 ,0  
(4d) 1,½,½ 

(4e) ~,y,z  y~-O,z~-O 
(4e) ~,y,z  y~-O,z~-~ 
(4f) x , ! , z  y~-O,z~_O 
(4f) x,~-,z y~--O,z~-~ 
(8g) x ,y ,z  
x~--O,y~-O,z~_~ 

No origin shift 

Out-of-phase 
tilting about the c 
axis 

P42/nmc a ~_ 2ap 
(A-137-2) b _~ 2ap 

c ~ 2 a p  
Tilt systems 

5 and 7 

A cation 

(4d) z z ~- I 
M cation 
(8e) 0 ,0 ,0  

(8g) ~, y,z  y ~-- O,z~-- O 
~! Z~-- (8g) 2,Y,Z y - - 2 ,  

(e) x,-x,1 x~_½ 

No origin shift 

Out-of-phase 
tilting about the 
c axis. 

P21/m a ~-- 21/2% 
(A-11-1) b _~ 2a 

c "~ 21~ap 
Tilt systems /3 # 90 ° 

8 and 9 

Acation (2e) x, i , z x ~-- O, z ~_ ½ 
(2e) x , i , z  x~_O,z~_O (2e) x,~ z x ~ - i , z ~ - O  
(2e) x,z z x ~ , z  ½ (4f) x ,y ,z  
M cation x _~ ~, y _~ 0, z -- 1 
(2b) ½,0,0 (4f) x ,y ,z  
(2c) 0,0,½ x~_1,y~_O,z  "-'3 

Shift by O, O, ½ 

In-phase tilting 
about the b axis 

Pnma a ~_ 21/2ap 
(A-62) b _~ 2a,  

Tilt systems c 21/'2ap 
10and 11 / 3 # 9 0  ° 

Acation (4c) x , l , z  x_~0,  z___½ 
(4c) x, ¼,z x _ 0 ,  z _ 0  (8d) x ,y , z  
M cation x ~ ~, y _~ 0, z -~ 
(4b) ~, 0, 0 

Shift by 0, 0, ½ 

In-phase tilting 
about the b axis 

F i  a _~ 2ap A cation (8i) x, y, z No origin shift 
(A-2) b_~2ap (8i)* x ,y ,z  x _ ~ , y ~ _ 0 ,  z ~ 0  

Tilt system c ~_ 2ap x ~_ ¼, y ~_ I , z ~- ~ (8i) x, y, z The standard 
12 c t # f l # y # 9 0  ° M cation z~--O,y~-1,z~--O setting is P i ,  add 

(4a) 0, 0, 0 (80 x, y, z face-centered 
(4b) 0, 0, ½ x _~ 0, y ~ 0, z ~ / generators for F i  

12/a a ~_ 2ap 
(A-15-3) b 2112ap 

Tilt system c ~_ 21/2ap 
13 / 3 # 9 0  ° 

Acation (4e) -14,y, 0 y_~½ 
(4e) ~,y, 0 y--~0 (8f) x ,y ,z  
M cation x _~ 0, y _~ ~, z ~ ¼ 
(4b) 0, ½,0 

Shift by 0, ½,0 

R3c a ~_ 21/2a A cation 
1/2 p (A-167-2) b ~ 2  ap (2a) 1 l 

Tilt system c ~_ 21/2ap M cation 
14 ot # , 6  # y--~ 60 ° (2b) 0 ,0 ,0  

(6e) x, ½-x ,  ¼ x~_~ No origin shift 

Rhombohedral 
cell 
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Table 5 (cont.) 

Space Unit-cell 
group size Cation positions Anion positions Comments 

14/mmm a ~-- 2ap A cation (8h) x, x, 0 x _ ~- Shift by 1 l -~ ,~ ,¼ 
(A-139) b~_2ap (2a) 0 ,0 ,0  (16n) O,y,z y~-~ ,z~-¼ 

c "~ 2% (2b) 0, 0, ½ No tilting about the 
Tilt system (4c) ½,0, 0 c axis 

16 M cation 
(8:) ~,-:, ~ 

Cmcm a ~- 2at, A cation (8e) x, 0, 0 x ~-- ~ Shift by ¼, - 41-, 0 
(A-63) b~_2at, (4c) 0, y, i y ' ~ 0  (8f) O,y,z y ~ - ! , z ' ~ O  

c_~2at, (4c) 0, y,a y-~½ (8g) x,Y, ¼ x !,y_~¼ In-phase tilting 
Tilt systems M cation about the c axis 

17 and 18 (8d) ¼,¼,0 

12/m a "~ 21/2% A cation (4i) x, 0, z x ~ -~, z ~-- ¼ Shift by ~,~,~1 1 
, ~ 1  

(A-12-3) b~axf2qt,c M(4i)cationX'O'z x ~ - ~ , z ~ - ]  (4g)(4h) :,?'y'0y, 0 Y~'iY - - No tilting about the 

Tilt system /~ ~ 90 ° (4e) -~, ¼,¼ b axis 
19 

Imma a ~ 2 a .  Acation (4e) 0 ,~,z  z - -~  Shift by ¼, ~, ¼ 
(A-74) b ~ 21]-2a (4e) 0, ¼,z z -~ 3 (8g) x, 0 ,0  x ~- 

1/2 p c --~ 2 at, M cation No tilting about the 
Tilt system (4b) i 1 =~, ~, ~ a axis 

20 

P4/mbm a ~_ 21/2a_ A cation (2b) 0, 0, ~ ~_ ~ No origin shift 
(A-127) b 21/2a~ (2c) 0, ~,½ (4g) x,x + ½,0 x 

c ~-- at, M cation In-phase tilting 
Tilt system (2a) 0, 0, 0 about the c axis 

21 

14/mcm a ~_ 21/2al/2 p A cation l ,  (4a) 0, 0, ¼ No origin shift 
(A-140) b ~ 2  at, (4b) 0, ¼ (8h) x , x + ½ , 0  x__ 

c ~_ 2at, M cation Out-of-phase 
Tilt system (4c) 0, 0, 0 tilting about 

22 the c axis 

Pm3m a = b = c = at, A cation 
(A-221) (lb) 1 t ~,~,½ 

Tilt system M cation 
23 (la) 0 ,0 ,0  

(3d) ½,0, 0 No origin shift 

Table 6. Atomic positions and unit-cell descriptions for all the space groups generated by tilting of the octahedra in 
combination with 1:1 cation ordering 

The number immediately below the space group name is the space-group number in International Tables for X-ray Crystallography (1983, 
Vol. A). All the space-group descriptions are standard settings. The other number in the first column signifies the tilt systems corresponding to 
each space group. Note that the ordered tilt system #20 and simple tilt system # 19 both are assigned to space group 12/m, but the choice of origin 
and atomic positions are different for the two structures. 

Space Unit-cell 
group size Cation positions Anion positions Comments 

Pnnn a ~- 2% A cation (8m) x, y, z Shift by ~, ~, ¼ 
(A-48-1) b " 2 a p  (2a) 0 , 0 , 0  x " O , y ~ - ¼ , z ~ - ]  

c~-2ap (2b) 0,!,½ (8m) x ,y ,z  =¼ 
Tilt systems (2c) ½ 0,½',~'? x ~ - l ' y ~ - O ' z  
1, 2 and 15 (2d) : (8m) x ,y ,z  

M and M' cations x "" ~, y "" ¼, z -~ 0 

(4e) i ' i ' i  (M) 
(4f) ~,~,~ (g ' )  

Pn3 a ~_ 2ap A cation (24h) x, y, z Shift by ~ 1 l 
(A-201-1) b~_2ap (2a) 0 , 0 , 0  x~--O,Y~--¼,z~--] 

c~_~. ( ~  o,½,~ 
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Space 
group 

Tilt system 
3 

e2/c 
(A-13-5) 

Tilt systems 
4 and 6 

P42/n 
(A-86) 

Tilt systems 
5 and 7 

P2~/n 
(A-14-2) 

Tilt systems 
10 and 11 

pi 
(A-2) 

Tilt systems 
8 and 9 

Fi 
(A-2) 

Tilt systems 
1, 2 and 13 

(A-2) 
Tilt system 

19 

R~ 
(A-148-2) 

Tilt system 
14 

P42/nnm 
(A-134-1) 

Tilt system 
16 

C2/c 
(A-~5-1) 

Tilt systems 
17 and 18 

Unit-cell 
size 

Table 6 (cont.) 

Cation positions 

M and M' cations 

(4b) i ' i ' i  (M) 
(4c) a ~'a (M') 

Anion positions 

b_~2ap 
¢~_2., 
y ~ 9 0  ° 

a ~_2ap 
b_~2% 
c_~2% 

a ~_ 2~/2a 
1/2 p b 2 at, 

c ~ _ 2% 
~¢90 o 

Pi  and F i  

a ~_ 2ap 
b ~_ 2ap 
c ~_ 2~ 

li 
a ~-- 21/2ap 
b = 2 a  
c ~_ 21~ap 
~¢9o o 

..~ 2~/2a 
a ~.. 21/2aP - 
b _  1/2 p 
c ~ 2 ap 
a _ ~ C ~ C r = 6 0  ° 

a ~_2ap 
b ~_2ap 
c =  2% 

b - ~  
c=2a, 
~ ¢ 9 o  o 

A cation 
(2e) I z .,~ l 
(2e) ~'Z Z~.}Z 

(2f) -, z -- - 
M and M' cations 
(2a) 0 , 0 , 0  (M) 
(2b) I,o,i (M) 
(2c) 0,0,~ (M') 
(2d) ½,0,0 (M') 

A cation !i 
(4e) - ,1 ,Z  Z--- 
M and M' 
(4c) 0 , 0 , 0  (M) 
(4d) ½,½,½ (M') 

A cation 
(4e) x, y, Z 
x " ~ O , y ~ _ O , z ~  
M and M' cations 
(4c) 0,½,0 (M) 
(4d) ½,0,0 (M') 

A cation 
(2i) x ,y ,z  

(20 x,y,z  
x~ - l , y=¼,z= l  
(20 x ,y ,z  
x ' ~ l , y ~ - l , ~ - I  
(20 x,y,z 
x~_~,y~_~,z=~ 
M cation 
(la) + (le) + (If) + (lg) 
M' cation 
(lb) + (lc) + (ld) + (lh) 

A cation 
(2c) x ,x ,x  x'=- 
M and M' cations 
(la) 0 , 0 , 0  (M) 
(lb) ½,½,½ (M') 

A cation 
(2a) o,o,o 
(2b) o, o, ½ 
(4c) I,o,o 
M and M' cations 

(4e) i ' i ' i  (M) 
(4f) ~ =,,Z (M') 

A cation 
(4e) 0 , y , i  y -~0 
(4e) 0,y,~ y~-½ 
M and M' cations 
(4c) ~ I ~.~,o (M) 
(4d) ~,a,~ (M') 

6x(4g) x, y, Z 
x~_¼,Y~_O,z'~O 
x~_O,y~--¼,z~--O 
x ~ - - O , y ' ~ O , z ~  
x = O , y = ~ , z z }  
x ~ i , Y ~ O ' z z i  
x ' ~  y~--O,z--- 

(8g) x , y , z  
x~_¼,y~--O,z~--O 
(8g) x, y, z 
x"~¼,y'~O,z~_½ 
(8g) x,y,z,  
x~_O,y~--O,z~--¼ 

(4e) x ,y ,z  
x~_~,y~_¼,z~--O 
(4e) x, y, z 
x~,y~¼,z=½ 
(4e) x ,y ,z  
x=½,y=O,z=¼ 

12x(2i) x ,y ,z  
x~_¼,y~.O,z~_O 
x~_O,y~-~ , z~O 
x~_O,y~--O,z~--~ 
X ~ 1  xz~,Y=½ ' z = 0  

- , y ~ _ O , x ~ _  ! 

x ~ i ' Y ~ i '  z x~O,y~---  
y~o',z 

x~_~_'y~,t z~-.~ 
x~- y~-- ~-" 

(6f) x, y,z 
x = l , y = ~ , z = ¼  

(8m) x,x,z 
x~_~,z '~O 
(16n) x,y,z  
x = ~ , y = ½ , z ~ l  

(8f) x,y,z  
x~_~,y~--O,z~--O 
(8f) x, y, z 
x ' ~ O , y ~ , z ~ - O  
(sf) x, y,z 
x~l,y~--~,Z~-- 1 

Comments 

No origin shift 

Out-of-phase 
tilting about the 
c axis 

No origin shift 

Out-of-phase 
tilting about the 
c axis 

Shift by 0, I,  0 

In-phase tilting 
about the b axis 

No origin shift 

The standard 
setting is P i  

For F i  use face- 
centered generators 
in addition 

For l i  use body- 
centered generators 
in addition 

No origin shift 

Rhombohedral 
cell 

Shift b y - l  1 ~,~,¼ 

No tilting about 
the c axis 

Shift by I , -  ¼,0 

In-phase tilting 
about the c axis 
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Space Unit-cell 
group size 

12/m a ~- 21/2a_ 
(A-12-3) b 21/2a~ 

c~_Z% 
Tilt system /~ g: 90 ° 

20 

P4/mnc a ~- 21/2a_~, 
(A-128) b ~_ 21/2ae 

~_~ 2a~ 
Tilt system 

21 

14/m a ~ 21/2a_ 
(A-87) b 212a; 

c___z% 
Tilt system 

22 

Fm3m a : b = c = 2ap 
(A-225) 

Tilt system 
23 

Table 6 (con t . )  

Cation positions 

A cation 
(40 x,O,z x~-½,z~-¼ 
M and M' cations 
(2a) 0,0,0 (M) 
(2a) ½,½, o (M') 

A cation 
(2c) 0, ½, 
M and M' cations 
(2a) 0,0,0 (g)  
(2b) 0,0,½ (M') 

A cation 
(rib) 0, ½, 
M and M' cations 
(2a) 0,0,0 (M) 
(2b) 0,0,½ (M') 

A cation 
(8c) ~,~,~ 
M and M' cations 
(4a) 0,0,0 (M) 
(4b) ½,½,½ (M') 

Anion positions 

(4i) x,O,z x~--O,z~--¼ 
(8j) x,y ,z ,  
x ' ~ , y ~ _ ~ , z ~ _ O  

(4e) 0,0, z z~--¼ 
(8h) x,y,O x~--~,y~-~ 

(4e) 0,0, z --41 
(8h) x,y,O x~-~ ,y~-¼ 

(24e) x, 0,0 x~¼ 

Comments 

No origin shift 

No tilting about 
the c axis 

No origin shift 

In-phase tilting 
about the c axis 

No origin shift 

Out-of-phase 
tilting about the c 
axis 

No origin shift 

P O T A T O ,  the standard space-group description of each 
tilt system was determined. These descriptions are given 
in Table 5 for simple perovskites and in Table 6 for 
ordered perovskites. One note of caution: both the a ° b  c 

(#19) tilt system among simple perovskites (Table 5) 
and the a ° b - b  - (#20) tilt system for ordered perovskites 
(Table 6) belong to the 12/m space group, but the atomic 
positions are different for the two tilt systems. Hopefully, 
this information will be of practical assistance to others 
working with distorted perovskite structures. 

APPENDIX B 
Vector proof of distorted octahedra in tilt systems 

4, 5, 6, 7, 17 and 18 

In Glazer ' s  original paper he points out that a mirror 
plane exists perpendicular to any axis about which 
there is either no tilting or in-phase tilting (Glazer, 
1972). These mirror planes are located halfway between 

i and the octahedra they separate (for example, at x = :~ 
3 in the doubled unit cell). With this in mind x = ~  

consider any of the ++-  or 0+-- tilt systems mentioned 
above. All these tilt systems have mirror planes located 
perpendicular to the x and y axes. As a consequence of 
having two mutually perpendicular mirror planes these 
tilt systems must have orthogonal axes. Now consider 
the octahedron centered at the origin and the octahedron 
located directly above it along the c axis. The orientation 
of each octahedron can be uniquely described by three 
metal--oxygen vectors pointing approximately down the 
x, y and z axes. For the octahedron at the origin these 
vectors will be denoted by 

V h  = A l x + B l y +  Clz ,  

Vly = A2x + B2y + C2x, 

Vtz = A3x + B3y + C3z. 

While for the second octahedron under consideration 
the metal--oxygen vectors describing the tilting of this 
octahedra can be defined as 

V2x - a l x  + b l y  + c lz ,  

V2y = a2x +b2y + c2z, 

V2z = a3x + b3y + c3z. 

The relationship between these six vectors is shown in 
Fig. 3. The other three M - - O  vectors associated with 
each octahedron can be generated using the inversion 
center at the origin of the octahedron and provide 
no additional information about the orientation of the 
octahedra. 

The inversion center that must be present at the origin 
of each octahedron restricts the M-cation positions to 
lie on the unit-cell axes. The metal centers of these 
two octahedra will be located at (0,0,0) and (0,0,½). 
Couple this with the fact that the axes are orthogonal 
and it is clear that in order for the two octahedra to 
be linked together and the second metal cation to be 
located directly above the first metal cation on the z axis 
the following relations must hold 

a3 =A3,  

b3 = B3, 
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and in order to keep all the M - - O  vectors the same 
length (necessary to maintain perfect octahedra), the 
third component of vector V2,, is also uniquely deter- 
mined as 

c3= - C3. 

Therefore, in any of the ++- or 0+-  tilt systems an 
arbitrary tilt of the octahedron at the origin fixes the 
vector V2z. 

The vectors V2x and Vey are also subject to several 
constraints. To begin with, the oxygen ions at the end 
of both these vectors must lie on the mirror planes 
discussed previously. This requirement also holds true 
for the octahedron at the origin so that 

The first two equations must be satisfied in order to 
keep all the M - - O  distances constant (where D is the 
M - - O  bond distance) and the last three equations must 
be satisfied to keep all the O - M - - O  bond angles 90 °. 
This leaves only four unknowns available to satisfy five 
linearly independent equations. In general, this will not 
be possible and one of the equations above will not be 
satisfied. The physical consequence of this is that either 
one of the bond angles or bond distances must distort 
from its ideal value in a perfect octahedron. To test this 
assertion calculations were carried out to ensure that 
for an arbitrary tilt of the first octahedron, it was not 
possible to simultaneously satisfy (1)-(5) for the second 
octahedron. The calculation of V2x, V2y and V2z for tilt 
system a+a*a  - is given in Appendix C, as an example. 

1 
a l  = A I  = - a ,  

2 
1 

b2 = B2 = - b ,  
2 

where a and b are the lattice constants along the x and y 
axes, respectively. Now the only unknown components 
remaining are bl ,  c l ,  a2 and c2. In other words, once 
the tilting of the first octahedron has been specified, five 
of the nine coefficients describing the orientation of the 
second octahedron are determined. However, in order to 
keep the second octahedron perfectly rigid the following 
equations must be satisfied 

D 2 = a l  2 + b l  2 + c l  2, 

D 2 = a22 + b22 + c22, 

0 = (a 1)(a2) + (b 1)(b2) +(c 1)(c2) 

0 = (a l ) (a3)  + (bl)(b3) + (cl)(c3) 

0 = (a2)(a3) + (b2)(b3) + (c2)(c3). 

V2z 

l z  

Vlx r y 

x 
Fig. 3. The metal--oxygen vectors discussed in the text for two 

octahedra linked along the z axis of  an a ÷ a ÷ a  - tilted perovskite. 

APPENDIX C 
Calculation of metal oxygen vectors in the a ÷ a ÷ a  - 

tilt system 

Consider the a+a+a - tilt system with three 10 ° clockwise 
tilts and a metal--oxygen distance of 2.00 ,~. Performing 
10 ° tilts about each of the three Cartesian axes results 
in the origin octahedron having an orientation described 
by the following vectors 

Vlx = 1.9397x - 0.3132y + 0.3736z, 

Vly = 0.3736x + 1.9397y - 0.3132z, 

V1z = 0.3133x + 0.3736y + 1.9397z, 
(1) 
(2) where the coefficients represent distances in/~ between 
(3) the metal ion at the origin and the three oxygen ions 

defining the octahedral orientation. Imposing the restric- 
(4) tions placed on the second octahedron by the mirror 
(5) planes and the orthogonal axes gives the following 

values for the M - - O  vectors of the second octahedron 

V2x = 1.9397x + b ly  + clz,  

V2y = a2x + 1.9397y - c2z, 

V2z = 0.3133x + 0.3736y - 1.9397z. 

By combining (2) and (4) above the vector V2x can be 
found so that it is perpendicular to V2z and of length 
2.00/1,. When this calculation is camed out a quadratic 
equation in c2 is obtained. Since the equation is a 
quadratic there are two solutions 

Vex = 1.9397x + 0.4299y - 0.2305z 

Vex = 1.9397x - 0.313 ly - 0.3736z. 

Both of these vectors are 2.00/1, long and perpendicular 
to V2z, but the second vector corresponds to in-phase 
tilting about the z axis, while the first vector is correct 
for out-of-phase tilting about the z axis. All the tilt 
systems considered here have out-of-phase tilting about 
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the z axis, so the first of the two vectors above will be 
taken as V2x and the second vector discarded. The final 
vector V2y must be perpendicular to both V2x and Vzz. 
A vector mutually perpendicular to these two vectors 
can be generated by taking the cross product V2x x V2z. 
The magnitude of this vector is now scaled so that its y 
component is 1.9397, giving the vector 

V2y = - 0.3783x + 1.9397y + 0.4347z. 

Combining the above calculations the orientation of 
the second octahedron can be described by the following 
set of three vectors 

V2x = 1.9397x + 0.4299y - 0.2305z, 

V2y = - 0.3783x + 1.9397y + 0.4347z, 

V2z = 0.3133x + 0.3736y - 1.9397z. 

The way in which these vectors were calculated 
guarantees they will satisfy (1) and (3)-(5), but no 
constraint has been placed on the length of vector V2~,. 
Calculating the length of V2y gives a value of 2.024 A, 
slightly longer than all the other M - - O  vectors. This 
result can be extended to all the ++- and 0+-  tilt systems. 
Therefore, we see that it is mathematically impossible to 
achieve linked octahedra in these tilt systems without 
distortions of the octahedra. The magnitude of these 
distortions will depend on the size of the tilt angles and 
the length of the M - - O  bonds. 

Note that when calculating the V2,, vector two so- 
lutions were found, the second vector was discarded 
because it corresponded to in-phase tilting about all 
three axes. However, if the calculations are carried 
through with this vector the final orientation of the 
second octahedra satisfies all five equations. This is in 
agreement with the fact that POTATO is able to generate 
structures possessing perfectly rigid octahedra in the +++ 
and 0++ tilt classes. 
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